signed

QiShunwang

“诚信为本、客户至上”

TORCH.TRIU

2021/6/24 20:14:10   来源:

torch.triu(input, diagonal=0, *, out=None) → Tensor

返回一个上三角矩阵

参数:

  • input:输入的张量

  • diagonal:对角线

>>> a = torch.randn(3, 3)
>>> a
tensor([[ 0.2309,  0.5207,  2.0049],
        [ 0.2072, -1.0680,  0.6602],
        [ 0.3480, -0.5211, -0.4573]])
>>> torch.triu(a)
tensor([[ 0.2309,  0.5207,  2.0049],
        [ 0.0000, -1.0680,  0.6602],
        [ 0.0000,  0.0000, -0.4573]])
>>> torch.triu(a, diagonal=1)
tensor([[ 0.0000,  0.5207,  2.0049],
        [ 0.0000,  0.0000,  0.6602],
        [ 0.0000,  0.0000,  0.0000]])
>>> torch.triu(a, diagonal=-1)
tensor([[ 0.2309,  0.5207,  2.0049],
        [ 0.2072, -1.0680,  0.6602],
        [ 0.0000, -0.5211, -0.4573]])

>>> b = torch.randn(4, 6)
>>> b
tensor([[ 0.5876, -0.0794, -1.8373,  0.6654,  0.2604,  1.5235],
        [-0.2447,  0.9556, -1.2919,  1.3378, -0.1768, -1.0857],
        [ 0.4333,  0.3146,  0.6576, -1.0432,  0.9348, -0.4410],
        [-0.9888,  1.0679, -1.3337, -1.6556,  0.4798,  0.2830]])
>>> torch.triu(b, diagonal=1)
tensor([[ 0.0000, -0.0794, -1.8373,  0.6654,  0.2604,  1.5235],
        [ 0.0000,  0.0000, -1.2919,  1.3378, -0.1768, -1.0857],
        [ 0.0000,  0.0000,  0.0000, -1.0432,  0.9348, -0.4410],
        [ 0.0000,  0.0000,  0.0000,  0.0000,  0.4798,  0.2830]])
>>> torch.triu(b, diagonal=-1)
tensor([[ 0.5876, -0.0794, -1.8373,  0.6654,  0.2604,  1.5235],
        [-0.2447,  0.9556, -1.2919,  1.3378, -0.1768, -1.0857],
        [ 0.0000,  0.3146,  0.6576, -1.0432,  0.9348, -0.4410],
        [ 0.0000,  0.0000, -1.3337, -1.6556,  0.4798,  0.2830]])