signed

QiShunwang

“诚信为本、客户至上”

面试官:MySQL的索引结构为什么使用B+树?

2021/6/3 15:53:03   来源:

一、前言

在MySQL中,无论是Innodb还是MyIsam,都使用了B+树作索引结构(这里不考虑hash等其他索引)。本文将从最普通的二叉查找树开始,逐步说明各种树解决的问题以及面临的新问题,从而说明MySQL为什么选择B+树作为索引结构。


二、二叉查找树(BST):不平衡

二叉查找树(BST,Binary Search Tree),也叫二叉排序树,在二叉树的基础上需要满足:任意节点的左子树上所有节点值不大于根节点的值,任意节点的右子树上所有节点值不小于根节点的值。如下是一颗BST。

在这里插入图片描述

当需要快速查找时,将数据存储在BST是一种常见的选择,因为此时查询时间取决于树高,平均时间复杂度是O(logn)。然而,BST可能长歪而变得不平衡,如下图所示(图片来源),此时BST退化为链表,时间复杂度退化为O(n)。
在这里插入图片描述
为了解决这个问题,引入了平衡二叉树。


三、平衡二叉树(AVL):旋转耗时

AVL树是严格的平衡二叉树,所有节点的左右子树高度差不能超过1;AVL树查找、插入和删除在平均和最坏情况下都是O(logn)

在这里插入图片描述
从图中可以看到,我们为 user 表(用户信息表)建立了一个二叉查找树的索引。图中的圆为二叉查找树的节点,节点中存储了键(key)和数据(data)。键对应 user 表中的 id,数据对应 user 表中的行数据。如果我们需要查找 id=12 的用户信息,利用我们创建的二叉查找树索引,查找流程如下:

  • 将根节点作为当前节点,把 12 与当前节点的键值 10 比较,12 大于 10,接下来我们把当前节点>的右子节点作为当前节点。
  • 继续把 12 和当前节点的键值 13 比较,发现 12 小于 13,把当前节点的左子节点作为当前节点。
  • 把 12 和当前节点的键值 12 对比,12 等于 12,满足条件,我们从当前节点中取出 data,即 id=12,name=xm。

利用二叉查找树我们只需要 3 次即可找到匹配的数据。如果在表中一条条的查找的话,我们需要 6 次才能找到。该二叉查找树也是一个平衡二叉树。

AVL实现平衡的关键在于旋转操作:插入和删除可能破坏二叉树的平衡,此时需要通过一次或多次树旋转来重新平衡这个树。当插入数据时,最多只需要1次旋转(单旋转或双旋转);但是当删除数据时,会导致树失衡,AVL需要维护从被删除节点到根节点这条路径上所有节点的平衡,旋转的量级为O(logn)

由于旋转的耗时,AVL树在删除数据时效率很低;在删除操作较多时,维护平衡所需的代价可能高于其带来的好处,因此AVL实际使用并不广泛。


四、红黑树:树太高

与AVL树相比,红黑树并不追求严格的平衡,而是大致的平衡:只是确保从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。从实现来看,红黑树最大的特点是每个节点都属于两种颜色(红色或黑色)之一,且节点颜色的划分需要满足特定的规则(具体规则略)。红黑树示例如下:
在这里插入图片描述

与AVL树相比,红黑树的查询效率会有所下降,这是因为树的平衡性变差,高度更高。但红黑树的删除效率大大提高了,因为红黑树同时引入了颜色,当插入或删除数据时,只需要进行O(1)次数的旋转以及变色就能保证基本的平衡,不需要像AVL树进行O(lgn)次数的旋转。总的来说,红黑树的统计性能高于AVL。

因此,在实际应用中,AVL树的使用相对较少,而红黑树的使用非常广泛。例如,Java中的TreeMap使用红黑树存储排序键值对;Java8中的HashMap使用链表+红黑树解决哈希冲突问题(当冲突节点较少时,使用链表,当冲突节点较多时,使用红黑树)。

对于数据在内存中的情况(如上述的TreeMap和HashMap),红黑树的表现是非常优异的。但是对于数据在磁盘等辅助存储设备中的情况(如MySQL等数据库),红黑树并不擅长,因为红黑树长得还是太高了。当数据在磁盘中时,磁盘IO会成为最大的性能瓶颈,设计的目标应该是尽量减少IO次数;而树的高度越高,增删改查所需要的IO次数也越多,会严重影响性能


五、选用哪种数据结构读取磁盘

因为内存的易失性。一般情况下,我们都会选择将 user 表中的数据和索引存储在磁盘这种外围设备中。但是和内存相比,从磁盘中读取数据的速度会慢上百倍千倍甚至万倍,所以,我们应当尽量减少从磁盘中读取数据的次数。

另外,从磁盘中读取数据时,都是按照磁盘块来读取的,并不是一条一条的读。如果我们能把尽量多的数据放进磁盘块中,那一次磁盘读取操作就会读取更多数据,那我们查找数据的时间也会大幅度降低。

如果我们用树这种数据结构作为索引的数据结构,那我们每查找一次数据就需要从磁盘中读取一个节点,也就是我们说的一个磁盘块。我们都知道平衡二叉树可是每个节点只存储一个键值和数据的。那说明什么?说明每个磁盘块仅仅存储一个键值和数据!那如果我们要存储海量的数据呢?

可以想象到二叉树的节点将会非常多,高度也会极其高,我们查找数据时也会进行很多次磁盘 IO,我们查找数据的效率将会极低!为了解决平衡二叉树的这个弊端,我们应该寻找一种单个节点可以存储多个键值和数据的平衡树,也就是我们接下来要说的 B 树。


六、B树:为磁盘而生

B树也称B-树(其中-不是减号),是为磁盘等辅存设备设计的多路平衡查找树,与二叉树相比,B树的每个非叶节点可以有多个子树。因此,当总节点数量相同时,B树的高度远远小于AVL树和红黑树(B树是一颗“矮胖子”),磁盘IO次数大大减少

定义B树最重要的概念是阶数(Order),对于一颗m阶B树,需要满足以下条件:

  • 每个节点最多包含 m 个子节点。
  • 如果根节点包含子节点,则至少包含 2 个子节点;除根节点外,每个非叶节点至少包含 m/2 个子节点。
  • 拥有 k 个子节点的非叶节点将包含 k - 1 条记录。
  • 所有叶节点都在同一层中。

可以看出,B树的定义,主要是对非叶结点的子节点数量和记录数量的限制。

下图是一个3阶B树的例子:
在这里插入图片描述

B树的优势除了树高小,还有对访问局部性原理的利用。所谓局部性原理,是指当一个数据被使用时,其附近的数据有较大概率在短时间内被使用。B树将键相近的数据存储在同一个节点,当访问其中某个数据时,数据库会将该整个节点读到缓存中;当它临近的数据紧接着被访问时,可以直接在缓存中读取,无需进行磁盘IO;换句话说,B树的缓存命中率更高。

B树在数据库中有一些应用,如mongodb的索引使用了B树结构。但是在很多数据库应用中,使用了是B树的变种B+树。


七、B+树

B+树也是多路平衡查找树,其与B树的区别主要在于:

在这里插入图片描述

在这里插入图片描述

  • B树中每个节点(包括叶节点和非叶节点)都存储真实的数据,B+树中只有叶子节点存储真实的数据,非叶节点只存储。非叶子节点仅具有索引作用,跟数据有关的信息均存储在叶节点中。在MySQL中,这里所说的真实数据,可能是行的全部数据(如Innodb的聚簇索引),也可能只是行的主键(如Innodb的辅助索引),或者是行所在的地址(如MyIsam的非聚簇索引)。
  • B树中一条记录只会出现一次,不会重复出现,而B+树的键则可能重复出现——一定会在叶节点出现,也可能在非叶节点重复出现。
  • B+ 树中各个之间是通过双向链表连接的,叶子节点中的数据是通过单向链表连接的。
  • B树中的非叶节点,记录数比子节点个数少1;而B+树中记录数与子节点个数相同。

由此,B+树与B树相比,有以下优势:

  • 更少的IO次数:B+树的非叶节点只包含键,而不包含真实数据,因此每个非叶子节点会存储更多的键值,相应的树的阶数(节点的子节点数)就会更大,树就会更矮更胖,因此B+树的高度更低,访问时所需要的IO次数更少。此外,由于每个节点存储的键值更多,所以对访问局部性原理的利用更好,缓存命中率更高。
  • 更适于范围查询:在B树中进行范围查询时,首先找到要查找的下限,然后对B树进行中序遍历,直到找到查找的上限;而B+树的范围查询,只需要对链表进行遍历即可。
  • 更稳定的查询效率:B树的查询时间复杂度在1到树高之间(分别对应记录在根节点和叶节点),而B+树的查询复杂度则稳定为树高,因为所有数据都在叶节点。

B+树也存在劣势:由于键会重复出现,因此会占用更多的空间。但是与带来的性能优势相比,空间劣势往往可以接受,因此B+树的在数据库中的使用比B树更加广泛。


八、总结

最后,总结一下各种树解决的问题以及面临的新问题:

  • 二叉查找树(BST):解决了排序的基本问题,但是由于无法保证平衡,可能退化为链表;

  • 平衡二叉树(AVL):通过自旋解决了平衡的问题,但是旋转操作效率太低;

  • 红黑树:通过舍弃严格的平衡和引入红黑节点,解决了AVL旋转效率过低的问题,但是在磁盘等场景下,树仍然太高,IO次数太多;

  • B树:通过将二叉树改为多路平衡查找树,单个非页节点可以存储多个键值和数据,解决了树过高的问题;

  • B+树:在B树的基础上,将非叶节点改造为不存储数据的纯索引节点,进一步降低了树的高度;此外将叶节点使用指针连接成链表,范围查询更加高效。